Single-shot femtosecond electron diffraction with laser-accelerated electrons: experimental demonstration of electron pulse compression.
نویسندگان
چکیده
We report the first experimental demonstration of longitudinal compression of laser-accelerated electron pulses. Accelerated by a femtosecond laser pulse with an intensity of 10¹⁸ W/cm², an electron pulse with an energy of around 350 keV and a relative momentum spread of about 10⁻² was compressed to a 500-fs pulse at a distance of about 50 cm from the electron source by using a magnetic pulse compressor. This pulse was used to generate a clear diffraction pattern of a gold crystal in a single shot. This method solves the space-charge problem in ultrafast electron diffraction.
منابع مشابه
High current table-top setup for femtosecond gas electron diffraction
We have constructed an experimental setup for gas phase electron diffraction with femtosecond resolution and a high average beam current. While gas electron diffraction has been successful at determining molecular structures, it has been a challenge to reach femtosecond resolution while maintaining sufficient beam current to retrieve structures with high spatial resolution. The main challenges ...
متن کاملSingle-shot three-dimensional structure determination of nanocrystals with femtosecond X-ray free-electron laser pulses.
Conventional three-dimensional (3D) structure determination methods require either multiple measurements at different sample orientations or a collection of serial sections through a sample. Here we report the experimental demonstration of single-shot 3D structure determination of an object; in this case, individual gold nanocrystals at ~5.5 nm resolution using ~10 fs X-ray free-electron laser ...
متن کاملHigh-coherence picosecond electron bunches from cold atoms.
Ultrafast electron diffraction enables the study of molecular structural dynamics with atomic resolution at subpicosecond timescales, with applications in solid-state physics and rational drug design. Progress with ultrafast electron diffraction has been constrained by the limited transverse coherence of high-current electron sources. Photoionization of laser-cooled atoms can produce electrons ...
متن کاملCapturing Structural Dynamics in Crystalline Silicon Using Chirped Electrons from a Laser Wakefield Accelerator
Recent progress in laser wakefield acceleration has led to the emergence of a new generation of electron and X-ray sources that may have enormous benefits for ultrafast science. These novel sources promise to become indispensable tools for the investigation of structural dynamics on the femtosecond time scale, with spatial resolution on the atomic scale. Here, we demonstrate the use of laser-wa...
متن کاملشبیهسازی ذرهای شتاب دادن الکترونها در پلاسمای کم چگال
One of the interesting Laser-Plasma phenomena, when the laser power is high and ultra intense, is the generation of large amplitude plasma waves (Wakefield) and electron acceleration. An intense electromagnetic laser pulse can create plasma oscillations through the action of the nonlinear pondermotive force. electrons trapped in the wake can be accelerated to high energies, more than 1 TW. Of t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review letters
دوره 105 21 شماره
صفحات -
تاریخ انتشار 2010